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Many microbes interact with one another, but the difficulty of directly
observing these interactions in nature makes interpreting their adaptive
value complicated. The social amoeba Dictyostelium discoideum forms aggre-
gates wherein some cells are sacrificed for the benefit of others. Within
chimaeric aggregates containing multiple unrelated lineages, cheaters can
gain an advantage by undercontributing, but the extent to which wild
D. discoideum has adapted to cheat is not fully clear. In this study, we exper-
imentally evolved D. discoideum in an environment where there were no
selective pressures to cheat or resist cheating in chimaeras. Dictyostelium
discoideum lines grown in this environment evolved reduced competitiveness
within chimaeric aggregates and reduced ability to migrate during the slug
stage. By contrast, we did not observe a reduction in cell number, a trait for
which selectionwas not relaxed. The observed loss of traits that our laboratory
conditions had made irrelevant suggests that these traits were adaptations
driven andmaintained by selective pressuresD. discoideum faces in its natural
environment. Our results suggest that D. discoideum faces social conflict in
nature, and illustrate a general approach that could be applied to searching
for social or non-social adaptations in other microbes.
1. Introduction
Microbes are capable of social behaviour that once would have seemed beyond
the abilities of such tiny organisms. Despite their small size and simplicity,
microbes can cooperate to sense their environment [1–3], hunt prey [4], kill ene-
mies [5], protect friends [6], move over difficult ground [7], collect nutrients [8]
and more. Microbial cooperation is worthy of study in its own right for its sig-
nificant consequences for human health and on the ecological services microbes
provide, but also because microbes have proven to be uniquely valuable model
organisms for studying major questions about evolution [9–11].

One long-standing question of interest is how cooperation evolves and is
maintained despite the threat of exploitation by non-cooperating cheaters
[12–16]. Many functions that larger organisms perform privately microbes
must perform publicly through the production and secretion of molecules
into their environment, which would seem to render them especially vulnerable
to the risk of exploitation. This, combined with their short generations and high
population sizes, makes social microbes especially well-suited for studying the
evolution of cooperation and conflict.

Dictyostelium discoideum is an interesting eukaryotic microbe with utility
as a model organism for scientists studying development, multicellularity,
immunology, cooperation and conflict [17–19]. While it spends most of its life
as a solitary unicellular hunter of bacteria, when starving, D. discoideum
enters a multicellular life stage (figure 1) [19–21]. Local amoebae aggregate
together to form a slug-like multicellular body that can move towards light.
Upon reaching a suitable spot, the slug develops into a fruiting body consisting
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Figure 1. (Caption continued.)
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Figure 1. (Continued.) Experiment overview. (a) Simplified schematic of D. discoideum’s social cycle, in which multiple genotypes (red and teal) can potentially
aggregate into chimaeric multicellular bodies. Most of the time, amoebae are unicellular and grow vegetatively. Upon starvation, cells aggregate and develop into a
multicellular slug stage, which moves towards light, and then a sessile fruiting body. The formation of the fruiting body requires the sacrifice of a minority of cells to
produce a stalk, and so cheater genotypes (red) can gain an advantage by undercontributing to stalk formation. Cheating appears to provide clear benefits in
artificial settings but its relevance to wild D. discoideum is debated. (b) Experimental evolution of D. discoideum under conditions which prevent it from entering
the social cycle should drive the loss of traits previously maintained by selective pressures related to it. (c) Slug mobility assays—experimentally evolved
D. discoideum (dark green) should travel less far during the slug stage than its ancestor (teal) due to relaxed selection. (d ) Cheating assays—if cheating is adaptive
in nature, experimentally evolved D. discoideum, when mixed equally into a chimaera with an RFP-labelled control strain (red), should be less well represented
among the spores of the resulting fruiting body than its ancestor due to relaxed selection.
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of a ball-shaped sorus of durable spores held aloft by a stalk
of dead somatic cells. The spores wait dormant in the sorus to
be dispersed—possibly by a passing invertebrate—to a new
location with sufficient prey [22,23].

Dictyostelium discoideum aggregates form from local amoe-
bae, which do not need to be closely related [18,24,25]. When
cells aggregate into chimaeras containing multiple unrelated
cell lineages, they have the opportunity for conflict that cells
within more conventional multicellular organisms—made
up of the clonal descendants of a single cell—mostly avoid.
In D. discoideum, this conflict centres on the production of its
fruiting body’s characteristic stalk, which requires about 20%
of the cells within an aggregate to die to help disperse the
remainder. Such a sacrifice would not be remarkable within
a clone (picture the staggering majority of human cells that
toil and die just to pass on a few gametes), but in a chimaeric
aggregate, it creates an incentive for competing cell lineages to
under-contribute to stalk production to minimize their own
losses and exploit more cooperative lineages [18,26,27].

Multiple studies have observed cheating in D. discoideum
[18,28–31]. Dictyostelium discoideum chimaeras form readily in
the laboratory, and careful observation of the fates of cells
within them reveals that not every cell lineage contributes
equally to stalk production. Some D. discoideum strains
appear to be consistently prone to exploiting or prone to
being exploited by others [28,32] such that a simple hierarchy
of cheaters and cooperators can be determined. Studies have
identified mutations that cause strains to cheat [29–31,33], and
in experimental evolution experiments where D. discoideum is
allowed to mutate, mix and fruit, non-fruiting obligate cheaters
readily evolve and outperform cooperative strains, even to
the point of causing population crashes [34]. Some evidence
suggests that D. discoideum has mechanisms for maintaining
high relatedness within fruiting bodies, which may imply the
existence of adaptations to reduce the risk of exploitation by
maximizing the chance that cells aggregate with cooperative
kin. There is evidence that D. discoideum actively segregates
between kin and non-kin at least temporarily during aggrega-
tion [35,36], though to what extent kin discrimination
may protect against cheaters is unclear [37–39]. Nonetheless
relatedness within fruiting bodies in nature is very high [24],
probably owing to population structure imposed by the way
D. discoideum grows and disperses [40,41]. Signatures of the
frequency-dependent selection that often accompanies evol-
utionary conflict have been detected in genes known to affect
cheating [42]. D. discoideum was also found to recognize and
respond to the presence of non-kinwithin a chimaeric aggregate
with changes in gene expression, development and dispersal
behaviour relative to clonal aggregates [43].

Despite multiple lines of evidence, however, some
researchers have questioned the relevance of cheating to
wild D. discoideum. As with any trait, directly proving that
cheating is an adaptation is difficult, particularly when most
studies of D. discoideum cheating involve laboratory-made
chimaeras. Non-fruiting obligate cheaters readily arise and
prosper (at least over the short term) in experimental evolution
experiments using D. discoideum under conditions imposing
low relatedness [34], but none were observed in a screen of
1039 spores isolated from 75 wild-collected fruiting bodies
[24]. This may suggest that in nature, the benefits obligate
cheaters reap by reducing stalk production in chimaeras are
too small or too infrequently realized to compensate for the
disadvantages of being unable to produce a functioning
stalk when there are no cooperative lineages to exploit—
D. discoideum cheaters in nature are likely to be facultative
cheaters. Results of genomic studies of D. discoideum genes
differentially expressed in chimaeras have been mixed—one
study observed signatures of increased polymorphism and
rapid evolution consistent with evolutionary conflict [44],
while another did not [45]. In the absence of direct observation
of cheating in nature, some researchers have proposed
that apparent cheating is a laboratory artefact of little
relevance to wild D. discoideum, and better explained by
variation in non-social life-history traits [46–48]. In this,
cheating in D. discoideum is in good company with other
well-supported social traits inmicrobes that have faced similar
skepticism [49,50].

In this study, we sought to infer whether or not
D. discoideum’s apparent cheating was the result of adaptations
to selective pressure to cheat (or resist cheating) in nature. We
experimentally evolved multiple wild D. discoideum strains
under conditions in which they never entered the social stage
of their lifecycle and thus never had the opportunity to cheat.
Without the opportunity to aggregate, selection on social traits
like cheating should be relaxed, generally leading to losses in
social function normally maintained by natural selection.

Key to this approach is the assumption that when a long-
standing selective pressure is removed, past adaptations
driven by that pressure are likely to be lost due to drift or,
more likely, pleiotropic trade-offs with other traits. Selection
upon one trait will often indirectly impact other traits, and
an organism’s traits often represent a compromise between
mutually incompatible adaptations to different selective
pressures. These compromises should tend to constrain the
evolution of adaptations to overcome any particular selective
pressure. An organism cannot, for example, evolve to be
smaller to save energy and larger to avoid predation at the
same time. If one selection pressure is relaxed, however, com-
promises are no longer necessary and constraints are lifted.
For this reason, we should expect that relaxing a selective
pressure should free an organism to lose traits that were
adaptations to that pressure [51–54].

We can look for these sorts of losses and use them to
infer selective pressures (and resultant adaptations) that we
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hypothesize are important but that are difficult to directly
observe, such as the pressure that wild D. discoideum would
experience if they were regularly exploited by cheaters.
When D. discoideum is evolved in an environment where we
know cheating is not relevant, it should lose adaptations
related to cheating, but it cannot lose adaptations that it does
not have. Therefore, loss of function when we make social
conflict irrelevant in the laboratory is evidence that we have
successfully relaxed a selective pressure that was relevant in
nature. By contrast, if cheating in D. discoideum is the result
of selective pressures on other, non-social traits and only
appears to be cheating in an artificial laboratory environment,
relaxation of selective pressures on the social stage should
not affect it.

In this study, we experimentally evolve D. discoideum
under conditions where cheating cannot occur, then measure
the effects of experimental evolution on D. discoideum’s ability
to cheat during the formation of chimaeric fruiting bodies.
In addition, we assayed the effects of experimental evolution
on two other phenotypes to act as controls with which we
could validate our logic. First, as an example of a trait that
we were very confident experienced relaxed selection in our
experiment, we assayed the distance travelled byD. discoideum
slugs after aggregation but prior to fruiting body formation.
The complexity of slug formation andmigration, and its ability
to enable aggregates to move towards the soil surface and
form fruiting bodies where they are in the best position to
be dispersed, is likely to be adaptive for D. discoideum in its
natural environment [55]. In laboratory conditions where no
slugs are formed, however, slug migration is irrelevant or
even potentially maladaptive if there are trade-offs between
it and more useful traits. We expect slug migration distance
to be uncorrelated, or negatively correlated with, fitness
in the laboratory and so we expect to see our evolved
D. discoideum lines evolve reduced migration distance relative
to their ancestors.

As an example of a trait that we are confident would not
experience relaxed selection in our experiment, we assayed
the number of cells D. discoideum produced within 48 h. Cell
population is a product of traits—like growth rate and efficient
use of resources—that we expect to be under strong selection
both in nature and in the laboratory. In fact, the simplicity,
mildness and abundance of the laboratory environment is
likely to result in increased selection to produce more cells
more quickly relative to a natural environment full of abiotic
and biotic threats and scarcity. We thus expect total cell
production to be positively correlated with fitness in the lab-
oratory, and do not expect to see loss of function in these
traits—in the laboratory, our D. discoideum still use it, so they
will not lose it. Together slug migration and cell production
traits act as controls because they reflect a selective pressure
that we experimentally relaxed and one that we did not
relax, respectively. By comparing the effects of experimental
evolution on cheating with its effects on these traits, we
should be able to infer whether D. discoideum experiences
selection pressure to cheat in nature.
2. Methods
(a) Culture conditions
We performed experimental evolution using SM/5 media [56]
(2 g glucose (Fisher Scientific), 2 g BactoPeptone (Oxoid), 2 g
yeast extract (Oxoid), 0.2 g MgCl2 (Fisher Scientific), 1.9 g
KHPO4 (Sigma-Aldrich), 1 g K2HPO5 (Fisher Scientific) and for
solid media 15 g agar (Fisher Scientific) per litre deionized
water). To start a fresh culture of D. discoideum, we diluted
spores from −80°C glycerol frozen stocks in KK2 buffer (2.25 g
KH2PO4 (Sigma-Aldrich) and 0.67 g K2HPO4 (Fisher Scientific)
per litre deionized water). We plated 1.0 × 105 total spores onto
an SM/5 plate along with 200 µl K. pneumoniae food bacteria
resuspended in KK2 to an OD600 of 1.5. To start a fresh culture
of any bacterial strain, we streaked stocks from the minus 80°C
freezer for isolation on SM/5 plates. We performed slug
migration and spore production assays on nutrient-free starving
agar plates.

(b) Antibiotic curing of D. discoideum
Many wild D. discoideum isolates are infected by Paraburkholderia
symbionts which affect their fitness and behaviours [57]. To
remove symbionts, 1.0 × 105 D. discoideum spores of each clone
were plated on SM/5 agar medium containing 30 µg ml−1 tetra-
cycline and 10 µg ml−1 ciprofloxacin with 200 µl of K. pneumoniae
resuspended in KK2 to an OD600 of 1.5. We allowed plates to
grow at room temperature under ambient light until formation
of fruiting bodies (3–5 days). We collected spores as above,
then diluted and plated again as above. We then collected
spores and performed spot test assays (described in [58]) and
PCR using Paraburkholderia-specific primers [59] to verify
successful curing.

(c) Experimental evolution
Three replicate lines each of ten strains (electronic supplementary
material, table S1) were plated on SM/5 plates. We incubated all
lines at room temperature under ambient light and transferred
0.5% of the population to fresh plates every 48 h. We performed
transfers by first harvesting all cells into 10 ml KK2 buffer using
gentle pipetting and scraping of the agar surface. We then
thoroughly vortexed the resulting suspensions, diluted them
200-fold and plated 100 µl onto fresh plates with 200 µl of an
OD600 = 1.5 K. pneumoniae suspension to serve as food. The 48 h
transfer interval was selected to preempt D. discoideum’s fruiting
stage and prevent direct selection on social traits. Every fifth
transfer, we additionally froze 1 ml of the undiluted suspension
of harvested cells at −80°C with 60% glycerol.

Following experimental evolution over 30 transfers,
D. discoideum lines were checked for cross-contamination using
fragment analysis. We extracted DNA from 100 µl of the
undiluted suspension of harvested cells using CHELEX resin
beads and amplified using fluorescently tagged PCR primers
specific to highly variable microsatellite loci known to differ in
length between D. discoideum strains [60]. Fragment analysis of
resulting amplicons was performed by Genewiz and evolved
strains were compared to ancestors. No cross-contamination
was detected.

(d) Cheating assays
To assay cheating, we determined the proportion of fluorescent
spores in fruiting bodies developing from an initial 50 : 50 mix
of a strain of interest and the RFP-labelled control strain RFP-
NC28.1. We assayed cheating in chimaeras comprising lines of
interest and a labelled control strain to reflect the natural context
where a cheater must compete against an unrelated strain. For
each ancestor and evolved line, we plated 2 × 105 frozen spores
onto an SM/5 agar plate. Inocula for evolved lines represented a
genetically diverse population. During mid-log stage (approx.
34–36 h after plating), we collected vegetative cells and washed
three times with cold KK2 buffer, counted using a hemacytometer
and diluted each suspension to 108 cells ml−1. We combined equal
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volumes of the focal strain and the labelled control strain and
gently mixed to get 50 : 50 mix suspensions. We prepared UV-
sterilized 13mm2 AABP 04 700 (Millipore) filter squares. We
pipetted 15 µl of the 50 : 50 mix suspension into the centre of
each of three filter squares pre-dampened with KK2. We trans-
ferred filters onto KK2 (non-nutrient) agar plates to initiate
immediate aggregation and development and incubated plates
for 5 days at room temperature.

After incubation, we examined and selected two filters from
each plate to assay. We prioritized filters where all fruiting
bodies formed on the filter (that is, filters where no slugs had
escaped onto the surrounding agar, leading to artificially lower
total spores present)—otherwise selection was random. We col-
lected each filter with the fruiting bodies that had grown atop
them with sterile forceps into 500 µl KK2 buffer, vortexed
thoroughly and took photographs with brightfield and fluor-
escence microscopy. We captured at least five fields for each
sample (representing around 1000–2000 spores). Each assay was
performed three times tomake three technical replicates (indepen-
dent plates/assays of cells from the same frozen stock) for each of
the ten ancestors and thirty experimentally evolved lines.

We counted total spores and fluorescent spores using Fiji [61].
We first manually converted micrographs into binary images
using a brightness threshold set individually for each image to
account for minor differences in contrast and brightness between
samples. We then used Fiji’s Count Particles function, filtering
for particles between 15 and200 µm2 and between 0.5 and
1.0 circularity (settings which consistently resulted in very similar
results to manual counting).

We determined proportion of fluorescent spores by dividing
the number of fluorescent spores (count from fluorescent image)
by the total spores (count from brightfield image). We also deter-
mined a percentage fluorescence for the RFP-NC28.1 control for
each assay and divided this proportion out of the results for the
50 : 50mix samples in order to compensate for incomplete labelling.

(e) Slug migration assays
In order to compare how experimental evolution affected slug
migration distance, we performed assays on ancestral and evolved
lines. Each assay was performed three times to make three techni-
cal replicates (separate plates/assays of cells from the same frozen
stock) for each of the 10 ancestors and thirty experimentally
evolved lines. For each assay, we marked a 10 cm secant line on
a 13 cm non-nutrient agar plate. We plated 50 µl of an OD600 =
50.0 suspension of K. pneumoniae in KK2 buffer containing 107

D. discoideum spores along the secant line. Inocula for evolved
lines represented a genetically diverse population. We allowed
the loaded sample to dry and wrapped the plates individually
in aluminium foil. On each wrapped plate, we made a small pin-
hole opposite the starting line throughwhich light could enter.We
placed the wrapped plates on the laboratory bench under a light
source and left them undisturbed for 8 days. At the end of the
8 days, we unwrapped the plates and photographed using a
Canon EOS 5D Mark III camera.

We used Fiji [61] to perform image processing and obtain
slug migration distances. First, we scaled images and overlayed
a 1 cm × 1 cm grid. We marked fruiting bodies on each image
and measured their distance from the starting line.

( f ) Cell count assays
To assay cell populations, we performed assays on ancestral and
evolved lines. For each ancestral and evolved line, we plated 1 ×
105 frozen spores on a fresh SM/5 nutrient agar plate, along with
200 µl of an OD600 = 1.5 suspension of K. pneumoniae food bac-
teria. Inocula for evolved lines represented a genetically diverse
population. Plates were incubated at room temperature. After
48 h, all cells were collected into a suspension of KK2 buffer by
pipetting buffer onto each plate’s surface and gently agitating
with a pipette tip. The resulting suspensions were then vortexed
and counted using a hemocytometer to determine total cell
populations on each plate. Conditions, timing and process of
cell count assays were identical to those used during the exper-
imental evolution process. Each assay was performed three
times to make three technical replicates (separate plates/assays
of cells from the same frozen stock) for each of the 10 ancestors
and 30 experimentally evolved lines.

(g) Spore count and sporulation efficiency assays
We assayed spore production using the plates prepared for the
slugmigration assays. One day after plates from the slugmigration
assays were imaged, we collected the fruiting bodies from each
plate into KK2 buffer. We counted the spores within the resulting
suspensions under a light microscope using a hemocytometer.

To test the possibility that apparent reductions in cheating
were the result of differences in the efficiency of sporulation of
evolved D. discoideum lines, we also performed spore production
assays on ancestral and evolved lines on plates without food bac-
teria. For each ancestral and evolved line, we plated 1.5 × 106

amoebae onto UV-sterilized 13 mm2 AABP 04 700 (Millipore)
filter squares on a fresh non-nutrient KK2 plate without exogen-
ous food. Inocula for evolved lines represented a genetically
diverse population. Under these conditions, amoebae immedi-
ately starve and enter the fruiting stage. After 96 h, we collected
each filter into a tube with 500 µl KK2 buffer, vortexed and
counted using a hemocytometer to determine the total spore pro-
duction of each plate. By immediately inducing the fruiting stage
and leaving no opportunity for growth, this assay effectively
isolates differences in the efficiency with which D. discoideum
lines could convert amoebae into spores. Each assay was per-
formed three times to make three technical replicates (separate
plates/assays of cells from the same frozen stock) for each of the
10 ancestors and 30 experimentally evolved lines.

(h) Statistical analysis
We performed analyses using R version 4.0.4 (R Core Team) [62]
with the lme4 package [63] and the emmeans package [64].

All statistical analyses were performed using the mean of
three technical replicates. To analyse changes in spore production
and slug migration distance, we used linear mixed effects
models with treatment (ancestor versus evolved) as a fixed
effect and strain as a random effect. The model used to analyse
slug migration was Average Migration Distance∼Treatment + (1|
Strain/Line), where Treatment was a 2-level factor (Ancestral or
Evolved), Strain represented which of the 10 ancestor lineages
were being tested (QS6, QS9, QS18, QS70, QS159, QS161, QS11,
QS69, QS395, QS859), and Line represented which replicate
evolved line was being tested (E1, E2 or E3). In the slug migration
assays, in order to account for fruiting bodies that developed at the
starting line (migration distance = 0), we weighted each plate’s
contribution to the model by the fraction of spores from fruiting
bodies with non-zero migration distances. This had the effect of
reducing the average migration distance on each plate by the frac-
tion of spores whose slugs did not migrate beyond the starting
zone. The model used to analyse cell count and spore count
data were Total Counted∼Treatment + (1|Strain/Line).

To analyse changes in representation among spores in
chimaeric fruiting bodies, we used a two-tailed, two-proportion
Z-test to maximize our statistical power. We also analysed
these data using a linear mixed effect model (Proportion of
spores∼Treatment + (1|Strain/Line)) and observed qualitatively
similar statistically significant results (not reported).

In order to convey the most biologically meaningful insight,
we have reported our results in terms of 95% confidence intervals
in addition to p-values [65].
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Figure 2. Experimentally evolved D. discoideum evolve reduced ability to cheat (or resist being cheated upon). Spores of ancestral D. discoideum strains are overrepre-
sented within chimaeric fruiting bodies made by combining equal numbers of the focal strain and a labelled control strain. When competed against the same control
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3. Results
(a) Cheating assays
For each D. discoideum line, we combined amoebae of the line
of interest with amoebae of the control strain RFP-NC28.1 at a
50 : 50 ratio, then measured the proportion of spores within
the resulting chimaeric fruiting bodies belonging to the con-
trol strain. Ancestral D. discoideum strains made up an
average of 54.27% of spores in chimaeric fruiting bodies,
suggesting that overall the wild strains could initially socially
outcompete RFP-NC28.1. In chimaeras made from evolved
D. discoideum strains and RFP-NC28.1, evolved D. discoideum
strains were significantly less well represented than their
ancestors had been (x21 ¼ 175:34, p < 0.001), contributing
an average of 51.07% of spores. Possible values for the
true decrease most compatible with our data ranged from
−2.65% to −3.56% (95% CI) (figure 2).

The reduced representation of evolved lines among spores
within chimaeras was not the result of evolved lines being less
capable of producing spores than their ancestors. We did
not detect a significant difference in sporulation efficiency
between amoebae from ancestral and evolved D. discoideum
lines inoculated clonally on SM/5 plates without exogenous
food (t28.09 = 0.421, p = 0.677). Under these conditions, which
should eliminate any effect of differences in vegetative cell
fitness between lines, ancestralD. discoideumproduced an aver-
age of 9.31 × 105 spores per plate after 4 days. Experimentally
evolved D. discoideum produced an average of 9.06 × 105

(−2.7%) spores per plate over the same timeframe. Possible
values for the true change most compatible with our data
ranged from 8.38 × 105 to 1.08 × 106 (−10.1% to +15.9%)
(95% CI) (electronic supplementary material, figure S1).
(b) Slug mobility assays
We measured the effects of experimental evolution on slug
migration by assaying the average distance travelled by
slugs produced by ancestral and evolved lines from a starting
position. Ancestral D. discoideum slugs migrated an average
of 4.01 cm from the starting line before fruiting. Experimen-
tally evolved D. discoideum slugs migrated less far, moving
an average of 3.52 cm (−12.2%) less far than their ancestors
(t27.49 =−2.969, p = 0.00367). Possible values for the true
reduction in migration distance most compatible with our
data ranged from 0.82 cm to 0.17 cm (−20.4% to −4.2%)
(95% CI) (figure 3b).
(c) Cell count assays
We measured the effects of experimental evolution on D. dis-
coideum’s ability to reproduce in the laboratory by comparing
the total cell populations reached by ancestor and evolved
lines in 48 h. Ancestral D. discoideum reached an average
population of 1.9 × 108 cells per plate after 48 h. Experimen-
tally evolved D. discoideum produced an average of 5.0 × 107

(+26.3%) more cells than their ancestors within the same
timeframe (t29 = 2.366, p = 0.0249). Possible values for the
true increase most compatible with our data ranged from
8.5 × 106 to 9.1 × 107 (+4.5% to +47.9%) (95% CI) (figure 4).
4. Discussion
Dictyostelium discoideum is a useful model organism for study-
ing cooperation and conflict. Its social cycle requires potentially
unrelated cells to cooperate, but also creates incentive for cells
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to exploit one another. While multiple lines of evidence attest
to some D. discoideum strains’ ability to exploit one another
in the laboratory, interpreting the relevance of cheating to
D. discoideum in nature is not trivial. In this respect, cheating
inD. discoideum echoes other prominent examples of microbial
sociality [49,50] and illustrates a general challenge in studying
adaptations in any organism. It is easier to prove that an
organism has a particular trait than it is to be certain what
selective pressures (if any) drove the trait’s evolution, and
doubly so if the organism is too small to directly observe in
its natural habitat.

This study attempts to shed light on the adaptive value of
cheating in D. discoideum in nature by experimentally evolving
wild strains of D. discoideum under laboratory conditions in



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231722

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 M

ay
 2

02
4 
which the social cycle—and thus cheating—is prevented. This
experiment hinges on the idea that relaxing selective pressures
an organism faces in nature will tend to result in loss of adap-
tations maintained by those pressures. Organisms seem to ‘use
it or lose it’ and become less well adapted to environments in
which they do not live [51,52]. For example, vestigial or transi-
ent traits like the hindlimbs of cetaceans, reduceddigits in birds
and ungulate mammals, and the eyes of cave fish appear to
serve little function but may be the remnants of adaptations
to past environments where selective pressures were different
[53,66,67]. Bacteria that live inside larger organisms, and in par-
ticular intracellular endosymbionts, experience high rates of
decay and loss of genes that are essential for free-living bacteria
but not necessary inside of a host [68,69]. Similarly, organisms
adapt to selective pressures imposed by other organisms with
which they interact and lose these adaptations when their
biotic context changes [70]. Viruses that infect an unfamiliar
host tend to lose their ability to infect their original host, allow-
ing for the creation of attenuated vaccines [71]. Island animals
freed from the threat of predation lose anti-predator beha-
viours maintained by those on the mainland [72–74]. Further,
trait losses have frequently been observed in experimental
evolution experiments, wherein animal or microbial popu-
lations are often passaged in much simpler environments
than those in which they evolved [75–82].

We looked for changes in experimentally evolved
D. discoideum’s ability to cheat thatwould suggest it had experi-
enced selective pressure to cheat (or resist cheating) in its
natural environment. In addition, we assayed slug migration
distance and cell number, two phenotypes for which we had
opposite a priori predictions.

We found that compared to their ancestors, experimen-
tally evolved D. discoideum were less capable cheaters (or,
alternatively, less capable of resisting being cheated upon)
within chimaeric fruiting bodies (figure 2). This result is
what we would expect if our ancestral D. discoideum strains
had adaptations to make them better cheaters (or more resist-
ant to being cheated upon) that atrophied when we relaxed
the selective pressures that were maintaining them.

This interpretation is strengthened by our results for slug
migration and cell number, which act positive and negative
controls, respectively, for our method. Slugs produced by
experimentally evolved D. discoideum lines migrated less
far than those produced by their ancestors (figure 3). As
slug migration is certainly an adaptive trait in nature, we
expected our ancestral lines to have adaptations that
enhanced it. Accordingly, when we relaxed selective pressure
on these adaptations by preventing slug formation entirely,
we expected to see evolved lines form less functional slugs
for the same reason we are suggesting that they became
less functional cheaters. By contrast, we found that evolved
D. discoideum produced more cells than their ancestors
(figure 4), probably as the result of selection for higher
growth rates and/or more efficient use of resources in the lab-
oratory during the vegetative stage. This reflects that the
laboratory environment—where food is plentiful and con-
ditions are mild—obliges cells to invest in outcompeting
neighbours rather than protect themselves from no-longer-rel-
evant hazards that they would face in nature. Cell number
remained at least as relevant during our experimental evol-
ution experiment as it would have been in nature, and thus
we did not expect the reduction in this trait that we observed
in the cheating and slug migration distance traits.
One potential alternative explanation for the reduced rep-
resentation of evolved lines within chimaeras in our cheating
assays could be due to changes in sporulation efficiency.
If evolved lines simply became worse at producing spores
from starved cells, they would contribute fewer spores in
chimaeric mixtures. This would appear like a loss of cheating
(or cheating resistance) but for completely non-social reasons.
To test this possibility, we assayed sporulation efficiency (the
fraction of a population of starved amoebae that become
spores) directly. We observed no difference between ancestral
and evolved lines (electronic supplementary material, figure
S1a). Ultimately, our evolved lines are at least as good at
producing spores as their ancestors, and (due to higher cell
numbers produced during the vegetative stage) often better
(electronic supplementary material, figure S1b). Since this
would tend to make them appear to be better cheaters in
our cheating assays, we suspect that the reduction in cheating
we observed is, if anything, an underestimate, and that
the best explanation is that we were observing losses of
adaptations no longer being maintained by selection.

A similar concern arises in interpreting the results of our
slug migration assays. We observed higher cell numbers in
our evolved lines, presumably due to selection on vegetative
cell fitness. But does cell number impact slug migration
directly? Past research has demonstrated that when plated at
higher densities, D. discoideum aggregates produce larger
slugs which travel longer distances [83]. We largely account
for this problem by performing these assays using standar-
dized inocula of starving amoebae on non-nutrient plates,
thus standardizing the number of amoebae we start with
and minimizing the opportunity for vegetative growth
during the assay. Any remaining growth opportunities due
to, for example, uneaten bacteria travelling with the inocula
could still impact the slug size and migration distance of
high-fitness evolved lines, but should lead to increased
migration distance rather than the decrease we observed.
Thus, again, we expect that the reduced slug migration dis-
tance of our evolved lines is if anything an underestimation
of the true extent of loss of slug functionality experienced
due to evolving under relaxed selection.

Adaptations are not free, and adapting to enhance one
trait can come at the expense of unrelated traits that may
be adaptive for other reasons [84–86]. While positive pleiotro-
pic interactions exist between some traits, it is probably
more common for unrelated functions to trade off negatively
for the same reason that detrimental mutations are more
common than beneficial mutations—there are more ways to
break a system than there are to improve it [52,87]. Traits
which serve different adaptive functions may trade off
antagonistically—either because the functions themselves are
less than fully compatible or simply because they represent
competing uses of an organism’s limited resources—and thus
trait values may sometimes represent some balance between
competing constraints. The need to compromise between
traits can lead to apparent maladaptation and potentially con-
strain evolution [88,89]. While the difficulties of measuring
pleiotropy make direct interrogation of this phenomenon
complicated [89–91], there exists a growing body of evidence
that antagonistic pleiotropy may be a key factor in the evol-
ution of life-history traits like senescence [92–94] and in the
maintenance of apparently maladaptive disease alleles [95,96].

If D. discoideum has adaptations that enhance its ability to
cheat (or resist being cheated), they are likely to come at some
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cost to adaptations to other selective pressures. When
D. discoideum is experimentally evolved under conditions
where it is no longer selected to cheat, these trade-offs
should incentivize it to lose cheating adaptations. By contrast,
if cheating is not selected for in nature, D. discoideum should
not have adaptations supporting it, and moving cells to an
environment where cheating continues not to be adaptive
should not change anything.

The results of our cheating assays suggest that wild
D. discoideum does have adaptations related to social conflict
which they lost when evolved in an artificial environment in
which cheating was necessarily irrelevant to their fitness. The
removal of any selective pressure on the social stage freed
experimentally evolved lines to evolve based upon non-
social selective pressures alone. Our results are consistent
with past molecular evolution studies implying D. discoideum
genes affecting cheating have an evolutionary history driven
by social conflict [42,44]. Dictyostelium discoideum probably
does cheat in nature.

Microbes lead complicated lives obscured from us by
their small size. Understanding even some apparently central
aspects of their biology is a complex task demanding mul-
tiple approaches and careful interpretation. Dictyostelium
discoideum’s social cycle has been the subject of interest for
decades, and yet how exactly it fits into this microbe’s life
in nature continues to inspire debate. The results of this
study support the idea that some wild D. discoideum strains
experience enough social conflict to have evolved adaptations
to it. Further, the approach we have employed here—looking
for otherwise inscrutable adaptations by evolving them away
in laboratory—should be applicable to a wide variety of traits
in a wide variety of organisms. This approach can usefully
supplement other approaches in researchers’ pursuit of a
more complete understanding of adaptation.
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